VisionFive 2 机器视觉入门 2: 人脸检测

发布时间:2024-10-25

在前面的文章中介绍了`MNN`以及`OpenCV`的交叉编译,本篇文章将基于这两个库完成人脸检测。人脸检测(Face Detection),就是给一幅图像,找出图像中的所有人脸位置,通常用一个矩形框框起来。传统的人脸检测,通常使用`Haar`特征可以快速的检测人脸,在OpenCV中可以通过`CascadeClassifier`函数使用此分类器。然而在VisionFive中,`CascadeClassifier`检测效率并不高,在这里本文使用[Ultra-Light-Fast-Generic-Face-Detector-1MB](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB) 简称(Ultra)模型对人脸进行检测。Ultra模型是针对边缘计算设备设计的轻量人脸检测模型,模型较小,同时计算速度快。

代码时间

1. 设置编译器

$ export PATH=$PATH:${YOUR_PATH}/riscv/bin$ export CC=riscv64-unknown-linux-gnu-gcc$ export CXX=riscv64-unknown-linux-gnu-g++

2. 模型部分

MNN的使用较为简单,使用方法类似TensorFlow 1.x,简要的流程为

// 创建会话createSession();// 设置输入getSessionInput();// 运行会话runSession();// 获取输出getSessionOutput();

在该逻辑下,将模型的运行预处理,推理,后处理封装为一个模块:

// ultraFace.hpp#ifndef UltraFace_hpp#define UltraFace_hpp#pragma once#include "MNN/Interpreter.hpp"#include "MNN/MNNDefine.h"#include "MNN/Tensor.hpp"#include "MNN/ImageProcess.hpp"#include <opencv2/opencv.hpp>#include <algorithm>#include <iostream>#include <string>#include <vector>#include <memory>#include <chrono>#define num_featuremap 4#define hard_nms 1#define blending_nms 2 /* mix nms was been proposaled in paper blaze face, aims to minimize the temporal jitter*/typedef struct FaceInfo {    float x1;    float y1;    float x2;    float y2;    float score;} FaceInfo;class UltraFace {public:    UltraFace(const std::string &mnn_path,              int input_width, int input_length, int num_thread_ = 4, float score_threshold_ = 0.7, float iou_threshold_ = 0.3,              int topk_ = -1);    ~UltraFace();    int detect(cv::Mat &img, std::vector<FaceInfo> &face_list);private:    void generateBBox(std::vector<FaceInfo> &bbox_collection, MNN::Tensor *scores, MNN::Tensor *boxes);    void nms(std::vector<FaceInfo> &input, std::vector<FaceInfo> &output, int type = blending_nms);private:    std::shared_ptr<MNN::Interpreter> ultraface_interpreter;    MNN::Session *ultraface_session = nullptr;    MNN::Tensor *input_tensor = nullptr;    int num_thread;    int image_w;    int image_h;    int in_w;    int in_h;    int num_anchors;    float score_threshold;    float iou_threshold;    const float mean_vals[3] = {127, 127, 127};    const float norm_vals[3] = {1.0 / 128, 1.0 / 128, 1.0 / 128};    const float center_variance = 0.1;    const float size_variance = 0.2;    const std::vector<std::vector<float>> min_boxes = {            {10.0f,  16.0f,  24.0f},            {32.0f,  48.0f},            {64.0f,  96.0f},            {128.0f, 192.0f, 256.0f}};    const std::vector<float> strides = {8.0, 16.0, 32.0, 64.0};    std::vector<std::vector<float>> featuremap_size;    std::vector<std::vector<float>> shrinkage_size;    std::vector<int> w_h_list;    std::vector<std::vector<float>> priors = {};};#endif /* UltraFace_hpp */
// ultraFace.cpp#define clip(x, y) (x < 0 ? 0 : (x > y ? y : x))#include "UltraFace.hpp"using namespace std;UltraFace::UltraFace(const std::string &mnn_path,                     int input_width, int input_length, int num_thread_,                     float score_threshold_, float iou_threshold_, int topk_) {    num_thread = num_thread_;    score_threshold = score_threshold_;    iou_threshold = iou_threshold_;    in_w = input_width;    in_h = input_length;    w_h_list = {in_w, in_h};    for (auto size : w_h_list) {        std::vector<float> fm_item;        for (float stride : strides) {            fm_item.push_back(ceil(size / stride));        }        featuremap_size.push_back(fm_item);    }    for (auto size : w_h_list) {        shrinkage_size.push_back(strides);    }    /* generate prior anchors */    for (int index = 0; index < num_featuremap; index++) {        float scale_w = in_w / shrinkage_size[0][index];        float scale_h = in_h / shrinkage_size[1][index];        for (int j = 0; j < featuremap_size[1][index]; j++) {            for (int i = 0; i < featuremap_size[0][index]; i++) {                float x_center = (i + 0.5) / scale_w;                float y_center = (j + 0.5) / scale_h;                for (float k : min_boxes[index]) {                    float w = k / in_w;                    float h = k / in_h;                    priors.push_back({clip(x_center, 1), clip(y_center, 1), clip(w, 1), clip(h, 1)});                }            }        }    }    /* generate prior anchors finished */    num_anchors = priors.size();    ultraface_interpreter = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(mnn_path.c_str()));    MNN::ScheduleConfig config;    config.numThread = num_thread;    MNN::BackendConfig backendConfig;    backendConfig.precision = (MNN::BackendConfig::PrecisionMode) 2;    config.backendConfig = &backendConfig;    ultraface_session = ultraface_interpreter->createSession(config);    input_tensor = ultraface_interpreter->getSessionInput(ultraface_session, nullptr);}UltraFace::~UltraFace() {    ultraface_interpreter->releaseModel();    ultraface_interpreter->releaseSession(ultraface_session);}int UltraFace::detect(cv::Mat &raw_image, std::vector<FaceInfo> &face_list) {    if (raw_image.empty()) {        std::cout << "image is empty ,please check!" << std::endl;        return -1;    }    image_h = raw_image.rows;    image_w = raw_image.cols;    cv::Mat image;    cv::resize(raw_image, image, cv::Size(in_w, in_h));    ultraface_interpreter->resizeTensor(input_tensor, {1, 3, in_h, in_w});    ultraface_interpreter->resizeSession(ultraface_session);    std::shared_ptr<MNN::CV::ImageProcess> pretreat(            MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3,                                          norm_vals, 3));    pretreat->convert(image.data, in_w, in_h, image.step[0], input_tensor);    auto start = chrono::steady_clock::now();    // run network    ultraface_interpreter->runSession(ultraface_session);    // get output data    string scores = "scores";    string boxes = "boxes";    MNN::Tensor *tensor_scores = ultraface_interpreter->getSessionOutput(ultraface_session, scores.c_str());    MNN::Tensor *tensor_boxes = ultraface_interpreter->getSessionOutput(ultraface_session, boxes.c_str());    MNN::Tensor tensor_scores_host(tensor_scores, tensor_scores->getDimensionType());    tensor_scores->copyToHostTensor(&tensor_scores_host);    MNN::Tensor tensor_boxes_host(tensor_boxes, tensor_boxes->getDimensionType());    tensor_boxes->copyToHostTensor(&tensor_boxes_host);    std::vector<FaceInfo> bbox_collection;    auto end = chrono::steady_clock::now();    chrono::duration<double> elapsed = end - start;    cout << "inference time:" << elapsed.count() << " s" << endl;    generateBBox(bbox_collection, tensor_scores, tensor_boxes);    nms(bbox_collection, face_list);    return 0;}void UltraFace::generateBBox(std::vector<FaceInfo> &bbox_collection, MNN::Tensor *scores, MNN::Tensor *boxes) {    for (int i = 0; i < num_anchors; i++) {        if (scores->host<float>()[i * 2 + 1] > score_threshold) {            FaceInfo rects;            float x_center = boxes->host<float>()[i * 4] * center_variance * priors[i][2] + priors[i][0];            float y_center = boxes->host<float>()[i * 4 + 1] * center_variance * priors[i][3] + priors[i][1];            float w = exp(boxes->host<float>()[i * 4 + 2] * size_variance) * priors[i][2];            float h = exp(boxes->host<float>()[i * 4 + 3] * size_variance) * priors[i][3];            rects.x1 = clip(x_center - w / 2.0, 1) * image_w;            rects.y1 = clip(y_center - h / 2.0, 1) * image_h;            rects.x2 = clip(x_center + w / 2.0, 1) * image_w;            rects.y2 = clip(y_center + h / 2.0, 1) * image_h;            rects.score = clip(scores->host<float>()[i * 2 + 1], 1);            bbox_collection.push_back(rects);        }    }}void UltraFace::nms(std::vector<FaceInfo> &input, std::vector<FaceInfo> &output, int type) {    std::sort(input.begin(), input.end(), [](const FaceInfo &a, const FaceInfo &b) { return a.score > b.score; });    int box_num = input.size();    std::vector<int> merged(box_num, 0);    for (int i = 0; i < box_num; i++) {        if (merged[i])            continue;        std::vector<FaceInfo> buf;        buf.push_back(input[i]);        merged[i] = 1;        float h0 = input[i].y2 - input[i].y1 + 1;        float w0 = input[i].x2 - input[i].x1 + 1;        float area0 = h0 * w0;        for (int j = i + 1; j < box_num; j++) {            if (merged[j])                continue;            float inner_x0 = input[i].x1 > input[j].x1 ? input[i].x1 : input[j].x1;            float inner_y0 = input[i].y1 > input[j].y1 ? input[i].y1 : input[j].y1;            float inner_x1 = input[i].x2 < input[j].x2 ? input[i].x2 : input[j].x2;            float inner_y1 = input[i].y2 < input[j].y2 ? input[i].y2 : input[j].y2;            float inner_h = inner_y1 - inner_y0 + 1;            float inner_w = inner_x1 - inner_x0 + 1;            if (inner_h <= 0 || inner_w <= 0)                continue;            float inner_area = inner_h * inner_w;            float h1 = input[j].y2 - input[j].y1 + 1;            float w1 = input[j].x2 - input[j].x1 + 1;            float area1 = h1 * w1;            float score;            score = inner_area / (area0 + area1 - inner_area);            if (score > iou_threshold) {                merged[j] = 1;                buf.push_back(input[j]);            }        }        switch (type) {            case hard_nms: {                output.push_back(buf[0]);                break;            }            case blending_nms: {                float total = 0;                for (int i = 0; i < buf.size(); i++) {                    total += exp(buf[i].score);                }                FaceInfo rects;                memset(&rects, 0, sizeof(rects));                for (int i = 0; i < buf.size(); i++) {                    float rate = exp(buf[i].score) / total;                    rects.x1 += buf[i].x1 * rate;                    rects.y1 += buf[i].y1 * rate;                    rects.x2 += buf[i].x2 * rate;                    rects.y2 += buf[i].y2 * rate;                    rects.score += buf[i].score * rate;                }                output.push_back(rects);                break;            }            default: {                printf("wrong type of nms.");                exit(-1);            }        }    }}

使用detect接口即可轻松获得输入图片中所有被检测脸的检测框

#include "UltraFace.hpp"#include <iostream>#include <opencv2/opencv.hpp>using namespace std;int main(int argc, char **argv) {    if (argc <= 2) {        fprintf(stderr, "Usage: %s <mnn .mnn> [image files...]\n", argv[0]);        return 1;    }    string mnn_path = argv[1];    UltraFace ultraface(mnn_path, 320, 240, 4, 0.65); // config model input    for (int i = 2; i < argc; i++) {        string image_file = argv[i];        cout << "Processing " << image_file << endl;        cv::Mat frame = cv::imread(image_file);        auto start = chrono::steady_clock::now();        vector<FaceInfo> face_info;        ultraface.detect(frame, face_info);        auto end = chrono::steady_clock::now();        for (auto face : face_info) {            cv::Point pt1(face.x1, face.y1);            cv::Point pt2(face.x2, face.y2);            cv::rectangle(frame, pt1, pt2, cv::Scalar(0, 255, 0), 2);        }        chrono::duration<double> elapsed = end - start;        cout << "all time: " << elapsed.count() << " s" << endl;        // cv::imshow("UltraFace", frame);        // cv::waitKey();        string result_name = "result" + to_string(i) + ".jpg";        cv::imwrite(result_name, frame);    }    return 0;}

运行结果

编译运行

$ cmake -Bbuild -S .$ cmake --build build

检测时间及检测效果如下:

user@starfive:~/Documents/u_face_bin$ sudo ./u_face_detect ./assets/slim/slim-320.mnn 3.bmpThe device support i8sdot:0, support fp16:0, support i8mm: 0Processing 3.bmpinference time:0.055068 sall time: 0.0691885 s

当然还可以检测视频中人脸,视频链接见下

https://mp.weixinbridge.com/mp/wapredirect?url=https%3A%2F%2Fwww.bilibili.com%2Fvideo%2FBV1mCbFeyEWQ%2F%3Fspm_id_from%3D333.999.0.0&action=appmsg_redirect&uin=MzgwODcwMTM2&biz=MzU1NDk5MzY1Nw==&mid=2247527275&idx=5&type=0&scene=0